Introduction to XSLT

Version 1.3.2
March 2020

ot dimitral

Introduction to XSLT March 2020 version 1.3.2 nikos dimitrakas

Table of contents

1 INTRODUCGTION ..ccuiteuiitenerenierencernscrenerasessssessssessssssnssssssssnsessssesssssssssssnsssnssssnssssnsesassesassssnsesnssssnsessnsesnnes 3
T Y I [3
L2 PREREQUISITES .evtuuuueieeeeeeetsruueeeeeseressstneeesessssssssnnsesesssssssssnseesssssssssnnsesesssssssssnseesessssssssnneesessssssssnnsesseseessssssses 3
1.3 STRUCTURE «.eeettttiieeeeeeeettttieeeeeeeeeetsta e eeseessesssaaaaeeeesessssannaeeesssssrannsasessssssnsnnnsesessssssssnnneeeesssssssnssssnnnnsesessnsren 3

2 SAIVMIPLE DATA ...ciiieeiiteetteetteieteeiteaestessseaseresseressessssssnssssssssasssenssssssessssssnssssnsssassesassssnssssnsessssssnsesansesnnes 4

3 ST ceeuirennerenierenceennereenernserenserenseressernsessnsssasssensesenserassesnssssnssssssssnsssensesensesassesnssssnsssnsssensesnssesnsssanseransene 6

4 EXAIVIPLES ... ceuieeiienirtenerenereeirenserenssreseseasersssessssssnsssassssnssssnsessssesnssssnsssassssnsssensesansesassssnsesnnsssnsenansesnnes 7
o R T o 1AV 111 3N 7

4.1.1 D (1 1 N 8

4.1.2 NEM .ottt ——.———oioioieieiees 10
4.2 SIMPLE ITERATION ..t uuueeeeeeetrunuueeeeeesrerssssnaeeeessesssssnaesessssssssnnseeeessssssssnneesessssssssnneeeessssssssnnsesessssssnsnnneeesnseeeeees 11
4.3 IVIULTIPLE TEMPLATES. .. eeettttuuueeeseesrerssunnseeeessssssnnnesesessssssssnnseseessesssssnneesessssssssnnseseessssssssnnseseesssssnnnnseseessssssens 13
4.4 ELIMINATING DUPLICATES .ettuuuuueeeeeeeresssunaseseesssssssnnseesessssssssnnseseessssssssnaesessssssssnsaseeessssssssaesessssssssnneseessesssnns 16
4.5 IVIULTIPLE SOURCES ... uuuuuuuuuuuuunnnnnnnnnnnnnnnnnnnsssessessesserssereeeeesnnnnnns 18
A6 CONDITIONALS ..evvtuttueeeeeeertrttteeeeeesrerssraaeeesssssstsaaeeessssssssanteeessssssssnnaesesssssssssnneeeessssssssnseseesssssssnnnsssneeeesees 20
4.7 DEFAULT VALUES «.evtuueeettteetetneeeettieeeseneeeeestneeessanassssneessssneesssnnessssnnsessnneesssnneesssneeessnneessssneeesssesesssnneessessnnnees 21
4.8 ATTRIBUTE VALUE TEMPLATES ..uuueeeeeeettutuieeeeereeesssunaseeesssesssnnnasesessssssssnsessessssssssnsesesssssssssnsesesssssssnnnneesessssssnnns 22
4.9 GROUPING (XSLT 2) ttiiiitiieeeeiie e ettt e e ettt e e ettt e ee ettt e e sttt e e eetbeeeeeasaeeeeasaaeaaataseeansseeeesssaeasseeeenssaeesassaaesasseaanseann 24
4.10 DYNAMIC XPATH EXPRESSIONS (XSLT 3).uiiieeiiieeeiiieeeiiitieeeiiteeeeetteeeestaeeeestteeeeesssesesssaseesassaseenssesessssesssnssenanns 26

5 EXECUTING XSLT 2 AND XSLT 3 ..ccuiieuiiieuireencrenerneieenserensernsssensersssessssssnssssssssassssnssssssessssssnssssssssnsssensesen 32
5.1 XSLTRANSFORM.NET .evvvvrrerrrrrerrerereeeeereeerereeeeeseeseeeseseeesesseeseeseeeeseeseseessssssesssssessesesssssesesesesesesssesesesesssesssasssesens 32
I 27X 25 ORIt 32

6 EPILOGUE......ccuiituiieniiiencrenereeerennerenserasessasessnsessssssnsssansssassssnsessnsessssssnssssnsssassssnsesassesassesnsssansesnsesansenns 32

Introduction to XSLT March 2020 version 1.3.2 nikos dimitrakas

1 Introduction

This compendium gives an introduction to XSLT and how to use some of its most common
features. Most of the XSLT features described in the examples later on are part of XSLT 1.
Some additional features were introduced in XSLT 2 and XSLT 3, but since this compendium
relies on products (Web browsers) that only support XSLT 1, only some XSLT 2 and XSLT 3
examples are covered in the last section of chapter 4. There are ways to test XSLT 2 and XSLT
3, but most require commercial products or libraries that require writing a client to use
them. The best free option is the site xslttest.appspot.com that has created such a program
that uses one of the available libraries. BaseX has also support for executing XSLT by using
the Saxon XSLT Processor.

The latest version of this compendium is available at
http://coursematerial.nikosdimitrakas.com/xslt/ where all other relevant files can also be
found.

1.1 XSLT

XSLT (or XSL Transformations) is a language that can be used to transform XML data from
one structure to another. The result may be XML, but it doesn’t have to be. A popular output
format is html.

XSLT 1 relies on XPath 1, while XSLT 2 relies on XPath 2 and XSLT 3 relies on XPath 3.
Consequently, XSLT 2 and 3 are far more powerful and flexible. Unfortunately the major web
browsers only support XSLT 1. Most of the examples in this compendium are in XSLT 1, so
they can be tested in any web browser. A few examples use XSLT 2 and XSLT 3 features. They
require an execution environment that supports XSLT 2/3, like xsltransform.net,
xslttest.appspot.com or BaseX.

1.2 Prerequisites

It is highly recommended that the reader has a good understanding of XML as well as some
knowledge of html and basic programming concepts like loops, conditionals, variables, etc.
Most of the examples can be executed in any major web browser, so having a computer
available while reading this compendium is recommended. Since XSLT relies heavily on
XPath, prior familiarity with XPath and even XQuery is a plus.

1.3 Structure

In the next chapter we will look at the sample data used for all the examples. In chapter 3 we
will take a look at different ways to connect XSLT files to XML files. Then in chapter 4, we will
go through several examples using the sample data.

Introduction to XSLT March 2020 version 1.3.2 nikos dimitrakas

2 Sample Data

In this chapter we will take a look at the XML data that we will use in all the examples to
follow. We will use one XML document with information about books and one XML
document with information about publishers. The two XML documents are available in the
files books.xml and publishers.xml and they are accompanied by books.dtd and
publishers.dtd which describe the structure of the two documents. The two DTDs are
presented below.

Books.dtd:

<IELEMENT Books (Book+)>

<!ELEMENT Book (Author+,Edition+)>

<IATTLIST Book Title CDATA #REQUIRED
OriginalLanguage CDATA #REQUIRED
Genre CDATA "N/A">

<!ELEMENT Edition (Translation*)>

<IATTLIST Edition Year CDATA #REQUIRED
Price CDATA #REQUIRED>

<IELEMENT Translation EMPTY>

<IATTLIST Translation Language CDATA #REQUIRED
Publisher CDATA "N/A"
Price CDATA #REQUIRED>

<IELEMENT Author EMPTY>

<IATTLIST Author Name CDATA #REQUIRED
Email CDATA #REQUIRED
YearOfBirth CDATA #REQUIRED
Country CDATA #REQUIRED>

The definition in books.dtd can be graphically represented according to the following figure.

Author

@Name Required
1..* | @Email Required

. Book ///,/—//;7 @Y earOfBirth Required
Books 1.. @Title Required @Country Required
@OriginalLanguage Required| 1.+ :
@Genre Default "N/A" .| Edition o jliansation

@Language Required
@Publisher Default "N/A"
@Price Required

@Year Required
@Price Required

Figure 1 Graphical representation of books.dtd
Publishers.dtd:

<IELEMENT Publishers (Publisher+)>

<IELEMENT Publisher (Address)>

<IATTLIST Publisher Name CDATA #REQUIRED>
<IELEMENT Address (Street, City, PostalCode, Country)>
<IELEMENT Street (#PCDATA)>

<IELEMENT City (#PCDATA)>

<IELEMENT PostalCode (#PCDATA)>

<IELEMENT Country (#PCDATA)>

4

Introduction to XSLT March 2020 version 1.3.2 nikos dimitrakas

The definition in publishers.dtd can be graphically represented according to the following

figure.

Street
— (#PCDATA)

Publishers N Publisher

City

JE=N
\
\

Address | -~

1
; (#PCDATA)

@Name Required T

= PostalCode
(#PCDATA)

Country
(#PCDATA)

Figure 2 Graphical representation of publishers.dtd

DTDs can unfortunately not express certain details like data types, unique constraints and
other complex business rules. For the remainder of this compendium we will consider the
following rules to also be valid in the two XML documents:

Every book has a unique title

Every author has a unique name and a unique e-mail

Two editions of the same book may not have the same year

Two translations of the same edition may not have the same language

Every publisher has a unique name

The value of the attribute Publisher in the element Translation always corresponds to
the name of a publisher

The attributes Price, Year and YearOfBirth allow only positive integers as their value

Introduction to XSLT March 2020 version 1.3.2 nikos dimitrakas

3 XSLT

An XSLT file is usually a file with the extension .xsl. Such a file contains all the transformation
rules to be applied to an XML file. One way to link the two files to each other is to insert a
reference to the XSLT file in the XML file. This is done with the following processing
instruction just before the root element of the XML document:

<?xml-stylesheet type="text/xsl" href="filename.xs|"?>

Where "filename.xsl" is of course the name of the XSLT file. This reference can be relative to
the location of the XML file or an absolute filename reference.

This method would of course imply that you can only have one XSLT file associated with each
XML file, which would be quite inflexible. The linking of the XSLT file could of course be done
dynamically for example if your XML file is generated by a program.

Another possible solution is to let the XSLT file reference the XML file it wants to use. This
can be done by using the XPath function "document". This gives us the possibility to also
have an XSLT file that works with two or more sources. The disadvantage is, of course, that
the XSLT files cannot be reused for different XML files. So choose your solution wisely!

For the examples in the next chapter, we will use any XSLT capable web browser as our
execution environment. These browsers will apply the referenced XSLT file when an XML file
(with such a reference) is opened. Should we try to open an XSLT file directly in a browser,
then the XSLT file would be considered to be the opened XML file (since XSLT files are also
XML files) and it would just be displayed. So in order to have the content of the XSLT file
executed and not just displayed, we need to always open an XML file with a reference to the
XSLT file. So we have the following two options (which correspond to the alternatives
discussed earlier):

1. Add a reference to the XSLT file in the XML file that contains the data and openitina
browser.

2. Write an XSLT file that uses the "document" function in order to access the XML file
with the data, and then use another XML file with just a reference to the XSLT file
and an empty root element. Such a file could look like this:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="filename.xs|"?>
<root/>

If we instead want to use a different execution environment the XSLT file and the XML file
may be linked dynamically by the execution environment. In BaseX for example, the XML
document and the XSLT document are provided as parameters to the function xslt:transform
(when the output should be XML) and or the function xslt:transform-text (when the output
should be text). This is similar to how this works in other products like DB2, SQL Server and
Oracle. xsltransform.net and xslttest.appspot.com use a similar principal where the two
documents are provided independently in two form components.

Introduction to XSLT March 2020 version 1.3.2 nikos dimitrakas

4 Examples

In this chapter we will go through several examples in order to test some of the most
common declarations and instructions that are part of XSLT. In most examples we will only
use one XML file as the data source.

4.1 Hello World

Let's start with a very basic example just to check that everything works correctly. The goal is
to show the text "Hello World" as the output if there is a root element. Our XSLT file (named
hello.xsl) could have the following content:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:transform version="1.0" xmins:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="text"/>
<xsl:template match="/">
<xsl:text>Hello World</xsl:text>
</xsl:template>
</xsl:transform>

Then we need an XML file (let's call it hello.xml) with a reference to the XSLT file. The
content of the XML file should be the following:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="hello.xsl"?>
<root/>

By opening the XML file in a web browser, the XSLT file will be called and the contained
templates will be applied if they match. Our XSLT file has only one template and it matches
the root element of the XML document. The content of the template element will thus start
constructing the output. The element xsl:output is a declaration that informs the executing
environment that the result will be of a certain type, in our case plain text. Other common
output methods are xml and html. The element xsl:text is an instruction that creates text in
the output.

The result would look like the following screenshots from some major web browsers?:

file:/ /localhost/V:/hellosxml - Opera |_ (O] | Firefo [_1O]x]
- |] fie: flocalhostiv: helo.xmi \| + | @ | L fiexf/jv:/ello.xml L&l -
P O | B ool |bohostyhelosm < | <] searchwith £ (L1 st helo.xanl - (29~ cooge P | B
Hello World Hello World
D o $- @~ @), view (100%)

1 For Chrome and other browsers using chromium (like Opera since version 15 and Vivaldi) to work with local
files, they must be started with the following command line parameter --allow-file-access-from-files. This is due
to some security design decision by Chromium developers.

Introduction to XSLT March 2020 version 1.3.2 nikos dimitrakas

(&) Netscape Navigator
File Edit WVew History Bookmarks Tools Help Ohello.xml

G BB O 0o [8 o A @
= : ':" € C O fiesf/v:/helo.xml <l A

| [fitex/ v/ hellocm]

Hello World Hello World

|5/ pone @ .
@ helloxmi = /2 v:\hello.xml - Windows Internet Explorer [Z[O[X]
@i‘\, % | vihello.xml Pl 42| %] @ viipeloom x o 57 3
<[> | [+ [fies//jvihelo.ml ¢)[Q-cooge | DO~ f~ (5 B 7
Hello World Hellc World

HA00% -

[helloxml O Wenu | I helloxml X |+ ~ = o X
< > W WM C @ V fileyvhelloxml - a < C 8B @ filey/vy/helloxml P H o,
H hello world Hello World

*

B

O]

ia]

+

m o O O M ¢ Fesel s m—— 100 %

Since all the elements in the XSLT file belong to the same namespace, it would be correct to
rewrite the file's content as the following:

<?xml version="1.0" encoding="UTF-8"?>
<transform version="1.0" xmlns="http://www.w3.0rg/1999/XSL/Transform">
<output method="text"/>
<template match="/">
<text>Hello World</text>
</template>
</transform>

4.1.1 XML

We may of course want the output to be XML instead of plain text. In that case we can
change the output method to xml and construct the desired XML structure inside the
template element:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:transform version="1.0" xmlins:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="xml" />
<xsl:template match="/">
<root><Hello>World</Hello></root>
</xsl:template>
</xsl:transform>

Introduction to XSLT March 2020 version 1.3.2 nikos dimitrakas

The result may look different in each browser depending on the setting for displaying XML.
Here are two examples:

file:/ /localhost/V:/helloxmlxml - Opera
file:fflocalhostfv: fhellox... >

= E@El! Local | locahostyV: helloxnlsml «| [<[earcr witn [2]

&= C | O file://V:/helloxml.xml

<root>»
<Hello> World
World
</Hello>
</root>

D o $-@- @), view (100%)

In the example above we created our elements directly, but we could instead use XSLT
instructions for that. In the example below we create the elements "root" and "Hello" and
we create an attribute "to" with "World" as its value:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:transform version="1.0" xmlins:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="xml" />
<xsl:template match="/">
<xsl:element name="root">
<xsl:element name="Hello">
<xsl:attribute name="to">World</xsl:attribute>
</xsl:element>
</xsl:element>
</xsl:template>
</xsl:transform>

The result would be the following:

file:/ flocalhost/V:/helloxml2xml - Opera

ﬁle:fﬂoa\hosw:ﬂﬂellox.‘. x
L AR ; 3 ? |- Local | localhostv: fhelloxml2. xml - |'g"v Search with GowlZ\

<root>
<Hello to="World"/>
</root>
b o -8~ &), view (100%)

Introduction to XSLT March 2020 version 1.3.2 nikos dimitrakas

The main components in an XML document are elements and attributes, but we may also
want to create comments or processing instructions. The XSLT instructions "comment" and
"processing-instruction"” can help us with that. Here is a simple example:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:transform version="1.0" xmins:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="xml" />
<xsl:template match="/">
<xsl:processing-instruction name="xml-hello">to="World"</xsl:processing-instruction>
<xsl:comment>Just an example for XSLT instructions</xsl:comment>
<xsl:element name="root">
</xsl:element>
</xsl:template>
</xsl:transform>

And the result would look like this:

file:/ [localhost/V:fhelloxmI3.xml - Opera M= E3
- | E] file:/flocalhost/v: hellox. .. ‘ | 5= | @
* < | M| W Lol localhost)v: helioxml3.xml - .". Search with Goog

This document had no style information.

<?xml-hello to="World"?>
<!--Just an example for XSLT instructicns-->

<root/>

S G- @ - @, view (100%)

4.1.2 html

Another popular output method is html. Since we are using web browsers as our execution
environment and display facility, it is only reasonable to use html for the output. The web
browsers will automatically render the result as html. Here is an example:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:transform version="1.0" xmins:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="html" />
<xsl:template match="/">
<html>
<head>
<title>XSLT says hello</title>
</head>
<body>
<h1>Hello World</h1>
</body>
</html>
</xsl:template>
</xsl:transform>

10

Introduction to XSLT March 2020 version 1.3.2 nikos dimitrakas

The result is a very simple html page that a browser could render like this:

@ XSLT says hello H=
< + | @ filez///V:/helohtmlxml & | |Qr Google [+ 4
Hello World

We could of course use the XSLT instruction "element" in order to create the elements
"html", "head", "title", "body" and "h1" but the result would be the same.

4.2 Simple iteration

It's now time to use some XML input data in the output. We can start by creating an XSLT file
(booktitles.xsl) with the following content:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:transform version="1.0" xmlins:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">
<html>
<head><title>Book titles</title></head>
<body>
<h1>Books</h1>
<xsl:for-each select="document('books.xml')//Book">
<p><xsl:value-of select="@Title"/></p>
</xsl:for-each>
</body>
</html>
</xsl:template>
</xsl:transform>

The template that matches the root of the calling document will create the html content of
the output. The new thing here is the XSLT instruction "for-each", where we retrieve a
sequence of Book elements from the XML file "books.xml". For each such node, we construct
an html paragraph with the currect book's title (the value of the Title attribute node inside
the Book element node). The reference to @Title is relative to the current book in the for-
each loop.

Now we need an XML file to call the XSLT file. We can create an XML file (booktitles.xml)
with the following content:

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/xsl" href="booktitles.xsl"?>
<root/>

11

Introduction to XSLT March 2020 version 1.3.2 nikos dimitrakas

When we open this file in a browser, the browser will use the XSLT in booktitles.xsl in order
to style the opened file. The XSLT will in turn open the XML file books.xml (which contains
our sample data) and create one paragraph for each Book element found there. The result
will look like this:

| Frefox ™ [=] E3
||_, Book titles | + | >

€ | [|| filesfffv:/booktities.sxml - C'] [‘." Google Pl #® B
N ==

Books

Misty Nights
Archeology in Egypt
Database Systems in Practice

Contact

[

It is of course possible to add the reference to the XSLT file directly in the XML file
books.xml. In that case the XSLT file does not have to use the XPath function "document",
since it is already in that context. We can create a new version of the XSLT file as
booktitles2.xsl with the content slightly modified:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:transform version="1.0" xmins:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">
<html>
<head><title>Book titles</title></head>
<body>
<h1>Books</h1>
<xsl:for-each select="//Book">
<p><xsl:value-of select="@Title"/></p>
</xsl:for-each>
</body>
</html>
</xsl:template>
</xsl:transform>

Then we just add the following processing instruction to books.xml just before the opening
tag <Books>:

<?xml-stylesheet type="text/xs|" href="booktitles2.xs|"?>

Now if we open the XML file books.xml in a browser we will get the same result as before.

12

Introduction to XSLT March 2020 version 1.3.2 nikos dimitrakas

4.3 Multiple templates

Another way to work with XSLT is to use templates recursively instead of using for-each
loops. So let's try to create the same result as in the previous example by using templates
instead of loops. We can create a new XSLT file (booktitles3.xsl) with the following content:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:transform version="1.0" xmins:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">
<html>
<head><title>Book titles</title></head>
<body>
<h1>Books</h1>
<xsl:apply-templates select="document('books.xml')//Book" />
</body>
</html>
</xsl:template>
<xsl:template match="Book">
<p><xsl:value-of select="@Title"/></p>
</xsl:template>
</xsl:transform>

This XSLT file has two templates: one matching the root of the document, and one that
matches Book elements. As usual, the first template will serve as the initiator of the process.
It will start creating the html output and after the h1 element, it will ask for all the relevant
templates to be applied to the selection. Since the selection is a sequence of Book element
nodes, the relevant templates will be applied to each node in the sequence. The only
relevant template for such nodes is our second template, which creates an html paragraph.

We can test our XSLT by creating a new XML file (booktitles3.xml) to call the XSLT. Its
content should be the following:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xs|" href="booktitles3.xsl"?>
<root/>

And the result will once again be the same as before:

E'Book titles - Windows Internet Explorer M=l E3

@ e I_ v:ibooktitles3.xml O 'I 4| A 2 Booktitles x o 9¢ ted
Books

Misty Nights

Archeology m Egypt
Database Systems i Practice
Contact

The Fourth Star |

HI00% v g

13

Introduction to XSLT March 2020 version 1.3.2 nikos dimitrakas

We can now expand this solution to also show the names of all the authors as an unordered
list after each title. We can create a new XSLT file (booktitlesauthors.xsl) with the following
content:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:transform version="1.0" xmlins:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">
<html>
<head><title>Book titles</title></head>
<body>
<h1>Books</h1>
<xsl:apply-templates select="document('books.xml')//Book" />
</body>
</html>
</xsl:template>
<xsl:template match="Book">
<p>
<xsl:value-of select="@Title"/>
<xsl:apply-templates select="Author" />
</p>
</xsl:template>
<xsl:template match="Author">
<xsl:value-of select="@Name"/>
</xsl:template>
</xsl:transform>

We have added a third template which matches Author elements and creates html list items.
We have also modified the second template so that it not only creates a paragraph with the
book title, but it also places, in the paragraph, an html unordered list whose content is the
result of applying all relevant templates to the node sequence returned by the XPath
expression "Author" (which of course is relative to the current Book element).

14

Introduction to XSLT March 2020 version 1.3.2 nikos dimitrakas

Using a new XML file (booktitlesauthors.xml) with a reference to the new XSLT file, we can
get the result:

Book titles - Opera H=l

U g L] =
4= g) 1 || B Local | localhost/v: fbooktitlesauthors, xml - ‘.l' Search with Google

Books

Misty Nights
+ John Craft
Asrcheology in Egypt
+ Armie Bastoft
* Meg Gilmand
+ Chris Ryan

Database Systems in Practice

o Alan Griff

+ Marty Fanst

» Celine Biceau
- =
Il | © $- &~ @) view (100%)

The same result can of course be achieved by using nested for-each instructions like this:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:transform version="1.0" xmlIns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">

<html>
<head><title>Book titles</title></head>
<body>
<h1>Books</h1>
<xsl:for-each select="document('books.xml')//Book">
<p>
<xsl:value-of select="@Title"/>

<xsl:for-each select="Author">
<xsl:value-of select="@Name"/>
</xsl:for-each>

</p>
</xsl:for-each>
</body>
</html>

</xsl:template>
</xsl:transform>

15

Introduction to XSLT March 2020 version 1.3.2 nikos dimitrakas

4.4 Eliminating duplicates

In XPath 2 we can use the function "distinct-values" in order to eliminate duplicate values. In
XPath 1 we need to do this in a different way. We can use the "preceding" axis and check
that no previous value is the same as the current one, thus only keeping the first occurrence
of each value. We may want to create a list of all the authors with a sublist with each
author's books. We could do this by finding all the authors (without duplicates) and then
looking for books for the current author in a loop:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:transform version="1.0" xmlIns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">
<html>
<head><title>Authors</title></head>
<body>
<h1>Authors</h1>
<xsl:variable name="doc" select="document('books.xml')" />
<xsl:for-each select="Sdoc//Author[not(@Name = preceding::Author/@Name)]">
<xsl:sort select="@Name" order="descending" />
<xsl:variable name="n" select="@Name"/>

<xsl:value-of select="@Name"/>

<xsl:for-each select="Sdoc//Book[Author/@Name = $n]">
<xsl:value-of select="@Title"/>
</xsl:for-each>

</xsl:for-each>
</body>

</html>
</xsl:template>
</xsl:transform>

Here we use a few new features. The first one is the XSLT instruction "variable". This is a
simple instruction for assigning values to variables. The value is the result of the evaluation
of the XPath expression specified in the select attribute. The variable can later be referenced
in any XPath expression (by using the standard XPath variable mechanism: adding a dollar
sign in front of the variable name). The second one is the "sort" instruction?, which allows us
to order the result of any loop. In this example we order the result according to the author
names in descending order.

2 Technically xsl:sort is not classified as an instruction in the specification. It is instead a support subelement to
other instructions.

16

Introduction to XSLT March 2020 version 1.3.2 nikos dimitrakas

The result would look like this:

@ Authors [_ (O] x|
< + | @ file:/{/v:/authors.xml & | | Qr Google O~ £~
Authors

® Sam Davis
© Music Now and Before b
o Musical Instruments

® Dierre Zargone
o Encore une fois

L]

Peter Feldon
¢ European History

L]

Peter de Jonge
¢ The Beach House

& MNimi Pappas
¢ Music Now and Before

&Moo Gilmand LI

We may want to show the number of books each author has written, instead of showing the
titles. And we may want to put the result in an html table instead of a plain list. For that we
can use the following XSLT:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:transform version="1.0" xmlIns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">
<xsl:variable name="doc" select="document('books.xml")" />

<html>
<head><title>Authors</title></head>
<body>
<table border="1">
<tr>
<th>Author name</th>
<th>Number of books</th>
</tr>
<xsl:for-each select="Sdoc//Author[not(@Name = preceding::Author/@Name)]">
<xsl:sort select="@Name" order="descending" />
<xsl:variable name="n" select="@Name"/>
<tr>
<td><xsl:value-of select="@Name"/></td>
<td><xsl:value-of select="count($doc//Book[Author/@Name = $n])"/></td>
</tr>
</xsl:for-each>
</table>
</body>
</html>

</xsl:template>
</xsl:transform>

17

Introduction to XSLT March 2020 version 1.3.2 nikos dimitrakas

Here we use the XPath function "count", which returns the number of nodes (or values) in
the sequence provided as the function's parameter. The result looks like this:

= [3
L B :
S [|| filesfffv:fauthors2 - C'] [-‘] ~ Google P] | B
| Author name |Number of books —
|Sam Davis k2
|Pierre Zargone |1
[Peter Feldon I
|Peter de Jonge |1 o
[Mimi Pappas I
Meg Gilmand I
Marty Faust I
[Maric Franksson |2
[Linda Evans I
!Llhan Carrera !1 =

4.5 Multiple sources

Sometimes the data we need may be available in different sources. As described earlier, our
data is in two files: books.xml and publishers.xml. We may need to combine these two files,
for example if we want to find books published by Swedish publishers. We can start by
finding all the Swedish publishers in publishers.xml and then use the result in order to find
books in books.xml that have been published by the right publishers. It is actually the
translations of the different editions that have a publisher, so that's where we are going to
look. The following XSLT does that and returns the titles of the right books.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:transform version="1.0" xmlIns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:variable name="books" select="document('books.xml')" />
<xsl:variable name="publishers" select="document('publishers.xml')" />
<xsl:template match="/">
<html>
<head><title>Books</title></head>
<body>
<h1>Books with translations published by Swedish publishers</h1>

<xsl:apply-templates select="Spublishers//Publisher[Address/Country = 'Sweden']"/>

</body>
</html>
</xsl:template>

18

Introduction to XSLT March 2020 version 1.3.2 nikos dimitrakas

<xsl:template match="Publisher">
<xsl:variable name="p" select="@Name" />

<xsl:value-of select="$p"/>

<xsl:apply-templates select="Sbooks//Book[Edition/Translation/@Publisher = Sp]"/>

</xsl:template>
<xsl:template match="Book">

<xsl:value-of select="@Title"/>

</xsl:template>
</xsl:transform>

As usual, the first template is used to initiate the result and it retrieves a sequence of
Publisher element nodes (the publishers from Sweden) and applies all the relevant
templates. The second template takes care of the Publisher elements and creates one list
item for each. It also retrieves (from the other file) the relevant books and applies the

relevant templates on them. The third template creates a list item for each Book element.
The result looks like this:

... = B
o= d q) # | B Local | localhostfv: fswedishpublisherbooks. xml - -.l | Search with Google

Books with translations published by Swedish publishers

1. Bista Bok

s The Fourth Star
2. KLC

+ Archeology in Egypt
3. 5CB

« Contact

L o $-@-

@), view (100%)

19

Introduction to XSLT March 2020 version 1.3.2 nikos dimitrakas

4.6 Conditionals

XSLT, just as many other languages, has an "if" instruction and a "choose" instruction. The
"if" instruction does not support an "else" clause, while the "choose" instruction can have
several "when" clauses and possibly an "otherwise" clause. We could use these instructions
when we want to vary the output based on certain conditions. Let's create an output that
shows all the books and highlights the books that are available in Swedish, with some
additional information about the number of translations. We want the output to look like
this:

'L_'N:‘_Z' Books - Netscape Navigator

File Edit WView History Bookmarke Tools Help

Bl @ m L file:fffv:booktranslations. xml | P @3}".5:5—:;35 Q g

| Books X

Misty Nights
- Many translations

Archeology in Egypt
- Available in Swedish
- Many translations

Database Systems in Practice
- No translations

Contact
- Available in Swedish
- Many translations

The Fourth Star

- Available in Swedish

- One translation

N iren snd sifn LI
Bl e

We can achieve the desired output with the following XSLT:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:transform version="1.0" xmlins:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:variable name="books" select="document('books.xml")" />
<xsl:template match="/">
<html>
<head><title>Books</title></head>
<body>
<xsl:apply-templates select="Sbooks//Book"/>
</body>
</html>
</xsl:template>

20

Introduction to XSLT March 2020 version 1.3.2 nikos dimitrakas

<xsl:template match="Book">
<p>
<xsl:value-of select="@Title"/>
<xsl:if test="Edition/Translation/@Language = 'Swedish'">

 - Available in Swedish
</xsl:if>
<xsl:choose>
<xsl:when test="count(Edition/Translation)=0">

 - No translations
</xsl:when>
<xsl:when test="count(Edition/Translation)=1">

 - One translation
</xsl:when>
<xsl:otherwise>

 - Many translations
</xsl:otherwise>
</xsl:choose>
</p>
</xsl:template>
</xsl:transform>

4.7 Default values

One interesting aspect of XML is that the associated DTD or XML Schema may provide
default values for attributes that may be missing in the XML document. In our sample data
we have an attribute Genre that may be missing, and in that case the default value is "N/A".
XSLT can use the information in the DTD and return the default value instead of nothing. We
can try this by selecting all the book titles and genres with this simple XSLT (file genres.xml):

<?xml version="1.0" encoding="UTF-8"?>
<xsl:transform version="1.0" xmlIns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">
<html>
<head><title>Book titles and genres</title></head>
<body>
<h1>Books</h1>
<xsl:for-each select="document('books.xml')//Book">
<p><xsl:value-of select="@Title"/>, Genre: <xsl:value-of select="@Genre"/></p>
</xsl:for-each>
</body>
</html>
</xsl:template>
</xsl:transform>

21

Introduction to XSLT March 2020 version 1.3.2 nikos dimitrakas

Unfortunately, not all browsers implement the default lookup, so the result may differ like
this:

- + | @ file:///v:/genres.xml ¢ | |Q Google O~ £t~ | L Book ties and genres [+] -
Al (&) [[file/ffv:fgenres.xml -] [-'] - Google P] @ B

Encore une fois, Genre: N/A E;/core une fois, Genre- — _d
European History. Genre: Educational European History, Genre: Educational
Musical Instruments, Genre: Educational Musical Instruments, Genre: Educational
Oceans on Earth, Genre: Educational Oceans on Earth. Genre: Educational
The Beach House, Genre: Novel The Beach House, Genre: Novel
Le chateau de mon pere, Genre: N/A _||I Le chateau de mon pere, Genre:]

4.8 Attribute value templates

When creating output, there are two main ways of creating nodes (elements, attributes,
etc.). The one way is to use node creation instructions (like xsl:element, xsl:attribute,
xsl:text, xsl:comment, etc). The other way is to write directly the textual representation of
the nodes (as we have done in the examples earlier in this chapter). Let's look at a simple
example with both these methods. We can use the XML document with the publishers and
produce the following structure:

<Publishers>
<Publisher Name="" Country=""/>
<Publisher Name="" Country=""/>
</Publishers>

The first solution is with node creation instructions:

<xsl:transform xmins:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0">
<xsl:output method="xml"/>
<xsl:variable name="publishers" select="document('publishers.xml')" />
<xsl:template match="/">
<xsl:element name="Publishers">
<xsl:for-each select="Spublishers//Publisher">
<xsl:element name="Publisher">
<xsl:copy-of select="@Name"/>
<xsl:attribute name="Country">
<xsl:value-of select=".//Country"/>
</xsl:attribute>
</xsl:element>
</xsl:for-each>
</xsl:element>
</xsl:template>
</xsl:transform>

22

Introduction to XSLT March 2020 version 1.3.2 nikos dimitrakas

The second solution is to just type the xml content directly:

<xsl:transform xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0">
<xsl:output method="xml"/>
<xsl:variable name="publishers" select="document('publishers.xml')" />
<xsl:template match="/">
<Publishers>
<xsl:for-each select="Spublishers//Publisher">
<Publisher Name="{@Name}" Country="{.//Country}" />
</xsl:for-each>
</Publishers>
</xsl:template>
</xsl:transform>

Here we have to use attribute value templates like {@Name}. It is not possible to use
xsl:value-of since that would cause the XSLT file to not be well-formed.

Both solutions produce the same result:

0 file:/ [localhost/D:fxslt4.8axml - Opera = |EI|5|
W opera [[fie:ocathost/D: fslt4 5. % | 45 “

€ 2 D o~ | Wl |locahost/D:/xslit4.8a.xml | |-:lv Search with Google |
*'III
[
g3 <Publishers>

<Publisher Name="ABC International™ Country="Germany"/>

(0] <Publisher Name="Addison" Country="France"/>
+ <Publisher Name="Aurora Publ." Country="Italy"/>

<Publisher Name="Benton Inc" Country="England"/>

<Publisher Name="Basta Bok" Country="Sweden"/>

<Publisher Name="EU Publishing" Country="Belgium"/>

<Publisher Mame="KLC" Country="Sweden"/>

<Publisher Mame="Kingsly" Country="Austria"/>

<Publisher Mame="Pels And Jafs" Country="Scotland"/>

<Publisher MName="RP" Country="Russia"/>

<Publisher Name="SCB" Country="Sweden"/>

<Publisher MName="Shou-Ling" Country="China"/>

<Publisher Name="Suomi Bookkii" Country="Finland"/>

<Publisher Name="Turk And Turk" Country="Turkey"/>
<fPublishers>

O & o e

Attribute value templates can of course be combined with node creation instructions in
order to produce element names or attribute names that are dynamic. We could, for
example, use the country as the element name instead of "Publisher". Try it!

23

Introduction to XSLT March 2020 version 1.3.2 nikos dimitrakas

4.9 Grouping (XSLT 2)

XSLT 2 introduces an instruction for grouping the iterations over a sequence. The instruction

for-each-group can be used to group the iterations and perhaps produce some content once

per group. Let's see how this instruction can help create an html page with a list of books per
author.

<xsl:transform version="2.0" xmins:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="html"/>
<xsl:template match="/">
<html>
<body>

<xsl:for-each-group select="//Author" group-by="@Name">
<xsl:sort select="current-grouping-key()" />

<xsl:value-of select="current-grouping-key()"/>

<xsl:for-each select="current-group()">
<xsl:value-of select="../@Title"/>
</xsl:for-each>

</xsl:for-each-group>

</body>
</html>

</xsl:template>
</xsl:transform>

Here we take all the Author elements and group them by the value of the Name attribute.
The function current-grouping-key() contains the value for the current group and can be
used to sort the groups and later as output. The function current-group() contains all the
Author elements that belong to the current group. Thus, to access the book titles of an
author (which is represented by a group), we loop through the Author sequence returned by
the current-group() and access the attribute Title of the parent element (Book is the parent
element of the Author element).

Executing this example requires an XSLT 2 processor. Some ways to execute XSLT 2 and XSLT
3 are described in chapter 5.

Here is the result in BaseX:

24

Introduction to XSLT March 2020 version 1.3.2 nikos dimitrakas

5 file* [books] - BaseX 9.3.2 - nox

Database Editor View Visualization Options Help

NEODR et QFOEREEBLD 1 Result
Find ~ ::Zl H ??
== 0 [| Sx || @ | Context: dbiopen("books") Editor
a7 file® i3
1 let $f := ”D:\hntroduction to XSLT\examples\xslt4.9.xs1"

return xslt:transform(/Books, %)
@ ok 1:15

[0 1Result, 3844 b Result

<html> e
<body>

<li»Alan Griff
<ol»
<1li>Database Systems in Practice</1i»
</ol»
«f1ix
<li»Alicia Bing
<ol»
Musical Instruments
</ol»
<f1li»
<lisAndreas Shultz
<ol»
European History</li»
</ol»
</1lix
Antje Liedderman
<ol»
«1li>European History
</ol»
<f1i»
<li»Arnie Bastoft
<ol»
«li>Archeology in Egypt</1i>
</ol» T

Time required: 54.45ms 92 MB

Since the result is html and not necessarily well-formed XML, we could/should use the
function xslt:transform-text instead.

BaseX does not provide a rendered version. By saving the result as an HTML file and opening
it in a web browser we can see the rendered version:

<l

O Meru | B xslte.2html % [+

88 ™ file:/{/D:/Instroduction%20t0%20XSLT/examples/xslt4.9.html W) A

e Alan Griff
1. Database Systems in Practice
s Alicia Bing
1. Mustical Instruments
¢ Andreas Shultz
1. Evuropean History
s Antje Liedderman
1. European History
¢ Arnie Bastoft
1. Archeology in Egypt
» Auna Gonzales Perre
1. European History
» Carl George
1. European History
s Carl Sagan
1. Contact
2. Carlens saga
e Celine Biceau
1. Database Systems in Practice
s Chris Ryan
1 Avrbanlams: in Tt =l

25

Introduction to XSLT March 2020 version 1.3.2 nikos dimitrakas

4.10 Grouping with composite grouping key (XSLT 3)

In the previous section we saw an example of a grouping where the value of only one
attribute was used as the grouping key. But what if we need to group on a combination of
things? Maybe we want to group the book translations based on the language and the year.
And then, for each combination of language and year, show the title and publisher. This can
be achieved by using a composite for-each-group. The element for-each-group has an
attribute called composite that can be set to true. And then the attribute group-by can have
a sequence representing the components of the composite grouping key. The following
would then create one group for each combination of a translation language and a year:

<xsl:for-each-group select=".//Translation" group-by="(@Language, ../@Year)" composite="true">

But what happens to the grouping-key that we can retrieve with the current-grouping-key()
function? Since the grouping is composite, the function returns a sequence consisting of the
corresponding values in the same order as defined in the group-by attribute. So, the full
solution could be the following (including some sorting showing the largest groups first and
equal sized groups sorted by year, which is the second part of the grouping key):

<xsl:transform version="3.0" xmlIns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>
<xsl:template match="/">
<Root>
<xsl:for-each-group select=".//Translation" group-by="(@Language, ../@Year)"
composite="true">
<xsl:sort select="count(current-group())" order="descending"/>
<xsl:sort select="current-grouping-key()[2]"/>
<Books>
<xsl:attribute name="Language" select="current-grouping-key()[1]"/>
<xsl:attribute name="Year" select="current-grouping-key()[2]"/>
<xsl:for-each select="current-group()">
<Book>
<xsl:copy-of select="ancestor::Book/@Title"/>
<xsl:copy-of select="@Publisher"/>
</Book>
</xsl:for-each>
</Books>
</xsl:for-each-group>
</Root>
</xsl:template>
</xsl:transform>

And here is the result in BaseX:

26

Introduction to XSLT March 2020 version 1.3.2 nikos dimitrakas

#i file* [books] - BaseX 93.2 - 0 *

Database Editor View Visualization Options Help

NMEDR Gadd QIO ERELREBHM 1 Result
Frd Zl =S
B £|'m [|[x|[a:| context: db:open("books") Editor
oo file* &2

let $f := "D:\Introduction to XSLT\examples\xsltd4.18.xsl"

return xslt:transform(/Books, $f)

9 ok 2:34
@]/ 2] 1Result, 7092b Result
<Root>

ae

<Books Langua
<Book Title="Mu
<Book Title="Enci

MNow and Before"/»
e une fois"/»

</Books>

<Books Language="Spanish" Year="1998">
<Book Title="European History" Publisher="EU Publishing"/>
<Book Titl eans on Earth" Publisher="ABC International"/»

</Books>

<Books Langus, ch” Year="1998">

<Book Title="E pean History” Publisher="EU Publishing"/>
<Book Title="Oceans on Earth" Publisher="ABC International”/»>
</Books> v
Time required: 34.42ms 68 MB

4.11 Dynamic XPath expressions (XSLT 3)

In some situations, it may be necessary to evaluate strings as XPath expressions. This is
illustrated in the following example, even though it is possible to achieve the same result
without evaluation of dynamic XPath expressions.

We can create a template that can be reused with different parameters in order to filter and
sort books.

<xsl:template name="SortedFilteredBooks">
<xsl:param name="filter"/>
<xsl:param name="sort"/>
<xsl:variable name="books">
<xsl:evaluate xpath=""//Book][' | | $filter || ']"" context-item="."/>
</xsl:variable>
<xsl:for-each select="Sbooks/Book">
<xsl:sort>
<xsl:evaluate xpath="Ssort" context-item="."/>
</xsl:sort>
<Book title="{@Title}" firstEdition="{min(Edition/@Year)}"/>
</xsl:for-each>
</xsl:template>

This template must be called with two parameters. The filter parameter must be a string
that can be a predicate to filter books and the sort parameter must be a string that contains
an XPath expression that can be applied to a book so that books can be sorted based on the
result.

The filter parameter is concatenated in an XPath expression that is evaluated and the result
is placed in the variable books. The sort parameter is evaluated inside an xsl:sort.

27

Introduction to XSLT March 2020 version 1.3.2 nikos dimitrakas

We can now call the template multiple times with different parameters. Here is a complete
XSLT document where the template is called three times. It is necessary to create a variable
"quote" in order to concatenate quotes inside a string that is inside an attribute.

<xsl:transform version="3.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="xml"/>
<xsl:variable name="quote">"</xsl:variable>
<xsl:template match="/">
<root>
<EnglishBookSortedByYear>
<xsl:call-template name="SortedFilteredBooks">
<xsl:with-param name="filter" select=""@0OriginalLanguage='| | Squote| | 'English'| | Squote"/>
<xsl:with-param name="sort" select=""min(Edition/@Year)"'/>
</xsl:call-template>
</EnglishBookSortedByYear>
<CarlSagansBooksByTitle>
<xsl:call-template name="SortedFilteredBooks">
<xsl:with-param name="filter" select=""Author/@Name='| | Squote| |'Carl Sagan'| | Squote"/>
<xsl:with-param name="sort" select=""@Title""/>
</xsl:call-template>
</CarlSagansBooksByTitle>
<BooksWith2001EditionByNumberOfAuthors>
<xsl:call-template name="SortedFilteredBooks">
<xsl:with-param name="filter" select=""Edition/@Year=2001""/>
<xsl:with-param name="sort" select=""count(Author)"'/>
</xsl:call-template>
</BooksWith2001EditionByNumberOfAuthors>
</root>
</xsl:template>
<xsl:template name="SortedFilteredBooks">
<xsl:param name="filter"/>
<xsl:param name="sort"/>
<xsl:variable name="books">
<xsl:evaluate xpath=""//Book[' | | Sfilter || ']'"" context-item="."/>
</xsl:variable>
<xsl:for-each select="Sbooks/Book">
<xsl:sort>
<xsl:evaluate xpath="Ssort" context-item="."/>
</xsl:sort>
<Book title="{@Title}" firstEdition="{min(Edition/@Year)}"/>
</xsl:for-each>
</xsl:template>
</xsl:transform>

Here is the result in BaseX:

28

Introduction to XSLT March 2020 version 1.3.2 nikos dimitrakas

i file* [books] - BaseX 9.3.2 - [m} X
Database Editor View Visualization Options Help
NEODR et QFOEREEBLD 1 Result
Find ~ |l B ??
RR=A"] yo [| Sx || @ | Context: dbiopen("books") Editor
a7 file® i3
1 let $f := "D:\Introduction to XSLT\examples\xslt4.11l.xsl"
return xslt:transform(/Books, %)
@ ok 1:15
[0 1Result, 1269 b Result

<root>
<EnglishBookSortedByYear>
<Book title="Misty Nights" firstEdition="1987"/>
<Book title="Contact" firstEdition="1988"/>

<Book title="Musical Instruments” firstEdition="1991"/>
<Book "Archeology in Egypt" firstEdition="1992"/>
<Book "Oceans on Earth” firstEdition="1996"/>

«Book sic MNow and Before" firstEdition="1997"/>

<Book title="European History" firstEdition="1998"/>)

<Book title="Database Systems in Practice" firstEdition="20008"/>

<Book title="The Fourth Star" firstEdition="2001"/>

<Book title="The Beach House" firstEdition="20802"/>

<Book title="The Fifth Star" firstEdition="2083"/>

<Book title="Oceanography for Dummies" firstEdition="2084"/>
</EnglishBookSortedByYear:>
<CarlSagansBooksByTitle»

«<Book title="Contact”™ firstEdition="1988"/>
</CarlSagansBooksByTitle»
<BooksWith2081EditionByNumberOfiuthors:>

<Book title="The Fourth Star" firstEdition="2001"/>

<Book title="Encore une fois" firstEdition="1997"/>

<Book title="Music Now and Before" firstEdition="1997"/>

<Book title="Musical Instruments” firstEdition="1991"/>

<Book title="Oceans on Earth"” firstEdition="1996"/>
</BooksWith2001EditionByNumberOfAuthors>
</root:

Time required: 148.35ms 83 MB

4.12 Text value templates (XSLT 3)

In section 4.2 we saw how to use the element value-of in order to get the value of a node
and use it in the result being created. Later, in section 4.8, we saw how we could simplify our
solution by using attribute value templates. In XSLT 1 and 2, we could use this convenient
syntax only for attributes. In XSLT 3 we can use a similar syntax for text nodes as well.

Based on the example from section 4.2, we would expect the following to work:

<xsl:transform version="3.0" xmlins:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">
<html>
<head><title>Book titles</title></head>
<body>
<h1>Books</h1>
<xsl:for-each select="//Book">
<p>{@Title}</p>
</xsl:for-each>
</body>
</html>
</xsl:template>
</xsl:transform>

But running this gives the following result:

29

Introduction to XSLT March 2020 version 1.3.2 nikos dimitrakas

i file* [books] - BaseX 9.3.2 —] ®
Database Editor View Visualization Options Help
NEODR et QFOEREEBLD 1 Result
Find ~ :E] U3 4
RR=A"] O| M | B | $x| & | Context: db:open("books") Editor
a7 file® i3
1 let $f := "D:\Introduction to XSLT\examples\xslt4.12.xsl"

return xslt:transform-text(/Books, %f)

@ ok 1:15
Hl @ 2] 1Resul, 5830 Result
<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Book titles</title>

</head>

<body>
<hl>Books</hl>
<p>{@Title}</p>
<p>{@Title}</p>
<p>{@Title}</p>
<p>{@Title}</p>
<px{@Title}</p>
<p>{@Title}</p>
<p>{@Title}</p>
<p>{@Title}</p>
<p>{@Title}</p>
<pr{@Title}</p>
<p>{@Title}</p>
<p>{@Title}</p>
<p>{@Title}</p>
<p>{@Title}</p>
<p>{@Title}</p>
<p>{@Title}</p>
<p>{@Title}</p>

</body>

</html>

Time required: 16.74ms 44 MB

The expression {@Title} has not been evaluated. It has been treated as text. In some cases,
this may be what we want. In order to force the expressions to be evaluated, we must add
the attribute expand-text. This attribute can be added at any level, so we could add it to the
root element transform:

<xsl:transform expand-text="yes" version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

Or we could add it to the element p (with the right namespace):

<p xsl:expand-text="yes">

Or we could add it to any other suitable level. Either way the result will now be as expected:

30

Introduction to XSLT March 2020 version 1.3.2 nikos dimitrakas

file™ [books] - BaseX 9.3.2 - m] s

Database Editor View Visualization Options Help

MEODR Gedtdp QO ELREEDRLI 1 Result
Find v ~ BT
REE=A= 2| M | 5x| @ | Context: db:open("books") Editor
o7 file® 2
1 let %f := "D:\Introduction to XSLT\examples\xslt4.12 xsl”
return xslt:transform-text(/Books, $f)
@ ok 1:15
@O 1Result, 7336 Result
<html> -
<head»

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<titlerBook titles</title>
</head>
<body>»
<hl>Books</hl>
<prMisty Nights</p»
<p>Archeology in Egypt</p>
<p>Database Systems in Practice</p>
<p>Contact</p>
<p>The Fourth Star</p»

Time required: 23.39 ms 26 MB

Using text value templates can make our code easier to read and reduce problems with
white spaces and line breaks. Consider the following example:

<xsl:transform version="3.0" xmins:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="xml" indent="true"/>
<xsl:template match="/">
<xsl:element name="Root">
<xsl:for-each select="//Book">
<xsl:element expand-text="yes" name="Book">
<xsl:attribute name="By">{string-join(Author/@Name, ", ")}</xsl:attribute>
"{@Title}" was written in {@OriginalLanguage} and exists in {count(Edition)} edition(s).
</xsl:element>
</xsl:for-each>
</xsl:element>
</xsl:template>
</xsl:transform>

31

Introduction to XSLT March 2020 version 1.3.2 nikos dimitrakas

5 Executing XSLT 2 and XSLT 3

Executing XSLT 2 and XSLT 3 requires a processor that supports the corresponding version.
The web sites xsltransform.net and xslttest.appspot.com provide an interface that on the
inside uses such processors. BaseX can also be configured to use an XSLT 2 or XSLT 3 Saxon
processor.

5.1 xsltransform.net & xslttest.appspot.com

xsltransform.net and xslttest.appspot.com are two websites that provides a form where an
XSLT document and an XML document can be written and then the result (of applying the
XSLT document to the XML document) is computed and presented either as XML or as
rendered HTML.

5.2 BaseX

BaseX comes with support for XSLT 1 by using the Saxon processor. BaseX can be configured
to use a later version of the Saxon processor in order to support XSLT 2 or XSLT 3. To do this,
download the latest Saxon processor jar file (saxon9he.jar, saxon9pe.jar or saxon9ee.jar) and
place it in the lib folder of BaseX. Then start the BaseX GUI by running the file basexgui.bat
(found in the bin folder of BaseX). The jar file will not load if BaseX GUI is started by the
executable BaseX.exe. Some advanced functionality requires a license. A trial license can be
acquired from saxonica.com (where the jar files are also available).

6 Epilogue

There are many more details about XSLT that we could discuss, but the goal of this
compendium is only to serve as a "Getting started" introduction. There are many good
resources about XSLT that could be of value if you want to become an expert. First and
foremost, the XSLT specification. In many cases the specification may be too formal and hard
to understand. So, books like "The XML 1.1 Bible" could serve you well.

In the examples that generate html as output, we used only very basic html components. It
is of course possible to use the full power of html with images, css, javascript, etc. But the

focus of the examples has been on the XSLT and not on the graphical design of the output.

| hope you have found this introduction educational and fun. Do not hesitate to send
comments and suggestions that may help improve the next version of the compendium!

The Author
o dimitral

32

